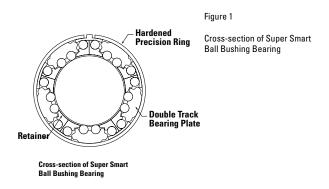
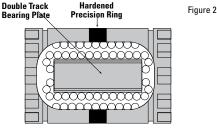
Super Smart Ball Bushing Bearing Products


Thomson Super Smart Ball Bushing Bearing products offer:


- Up to six times the load capacity or 216 times the travel life of conventional linear bearings.
- Twice the load capacity or eight times the travel life of industry standard Thomson Super Ball Bushing Bearings.
- A precision, super finished, dual track bearing plate for optimum system smoothness and performance.
- A universal self-alignment feature that compensates for misalignment of housing bores and 60 Case® LinearRace® shaft deflection, optimizes load distribution between ball tracks and assures uniform ball loading over the entire length of the bearing plate. Installation time and cost is minimized while bearing performance and life is maximized.
- A technologically advanced design that allows the bearing to maintain its diametrical fit-up when installed in a housing that is slightly out-of-round.

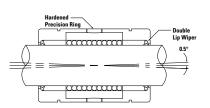
- Longer travel life and minimal machine downtime when replacing conventional linear bearings or the industry standard Super Ball Bushing Bearing.
- The RoundRail Advantage combined with universal self-alignment, eliminating the need for derating factors commonly required when using linear guides.
- A coefficient of friction as low as .001. This allows the use of smaller, less expensive motors, belts, gears and ball screws when replacing high-friction, plain bearings.
- Closed and open configurations.
- Double-lip integral wipers that keep out dirt while retaining lubrication. Travel life is maximized.
- Steady state travel speeds up to 10 ft./s and accelerations to 450 ft./s without the use of derating factors.

Super Smart Ball Bushing® Bearings represent a major advancement in linear bearing technology worldwide. These offer twice the load capacity or eight times the travel life of the industry standard Thomson Super Ball Bushing bearing. An enormous technological breakthrough, considering the Super Ball Bushing bearing already offers three times the load capacity or 27 times the travel life of conventional linear bearings.

Technologically Advanced Design

The load carrying component of the Super Smart Ball Bushing Bearing is the combination of four hardened bearing quality steel components (Figures 1 & 2).

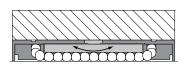
The first component is the steel outer ring, which allows the bearing to maintain its diametrical fit-up even when installed in a housing that is slightly out-of-round. The unique ring design also allows for bearing adjustment and the removal of diametrical clearance. The second component is the precision, super-finished, double-track bearing plate that provides twice the load capacity and features universal self alignment.


The third component is the rolling element. Each Super Smart Ball Bushing Bearing utilizes precision ground balls manufactured to the highest quality standards for roundness and sphericity. The result is maximum load capacity, travel life and performance.

The last component is the 60 Case® LinearRace® shaft that acts as the inner race to the Super Smart Ball Bushing Bearing. Each 60 Case LinearRace shaft is manufactured to the highest quality standards for roundness, straightness, surface finish and hardness. Roundness is held under 80 millionths of an inch; straightness to .001 inches per foot; surface finish under 8 microinch and hardness of 60 HRC minimum. The combination of inner and outer race or 60 Case LinearRace shaft and Super Smart Ball Bushing Bearing provides the basis for the RoundRail Advantage.

The RoundRail Advantage

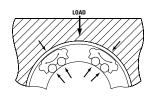
The RoundRail Advantage is the inherent ability of a Super Smart Ball Bushing Bearing system to accommodate torsional misalignment (caused by inaccuracies in carriage or base machining or by machine deflection) with little increase in stress to bearing components. Installation time and cost are minimized and system performance is maximized.


Figure 3

Universal Self-Alignment

The bearing plate of the Super Smart Ball Bushing Bearing is designed with many unique and technologically advanced features. The universal selfalignment feature assures that the Super Smart Ball Bushing Bearing will achieve maximum performance regarding load capacity, travel life, smooth operation and coefficient of friction. The three components that make up universal self-alignment are Rock, Roll and Yaw.

Rock



Closeup of hardened precision ring, showing how the bearing plate self aligns (rocks) about the curved surface of the ring.

Figure 4

The bearing plate is designed to rock 0.5° about the hardened precision ground outer ring (Figures 3 & 4). This self-aligning feature allows the Super Smart Ball Bushing Bearing to absorb misalignment caused by inaccuracies in housing bore alignment or 60 Case LinearRace shaft deflection. This rocking capability provides smooth entry and exit of the precision balls into and out of the load zone, assuring a constant low coefficient of friction. By compensating for misalignment, each bearing ball in the load carrying area is uniformly loaded providing maximum load capacity.

Roll

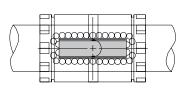

Closeup of double track bearing plates showing how they self align (roll) to evenly distribute the load on each of their two ball tracks.

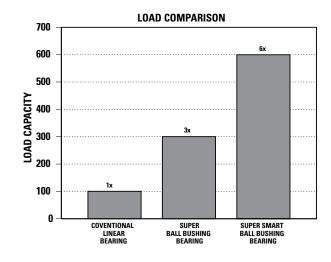
Figure 5

Figure 6

The second key design feature of the Super Smart Ball Bushing Bearing plate is its ability to **Roll**. The bearing plate is designed with the radius of its outer surface smaller than the inside radius of the precision outer ring (Figure 5). This allows the bearing plate to compensate for torsional misalignment and evenly distribute the load on each of its two ball tracks. The roll component assures maximum load capacity and travel life.

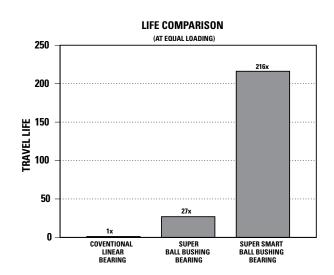
Yaw

Bearing plates rotate about their center to prevent skewing relative to the 60 Case LinearRace shaft.

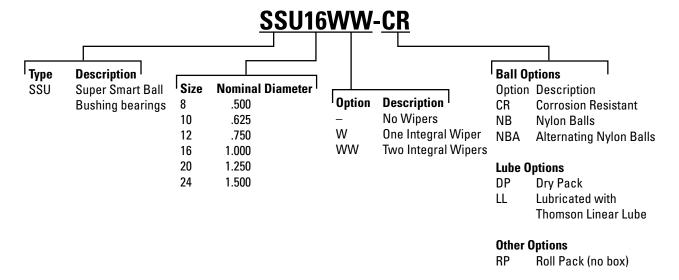

The shape formed by the Rock and Roll features allows the Super Smart Ball Bushing Bearing plate to rotate about its center (Figure 6). This allows the Super Smart Ball Bushing Bearing to absorb skew caused by misalignment. The result is a constant low coefficient of friction and maximum bearing performance.

Linear Motion. Optimized."

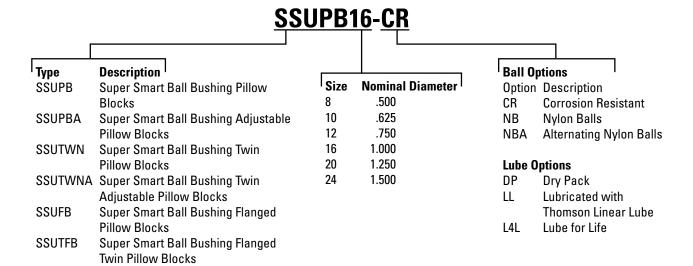
The Super Smart Advantage


Advantage: Load Capacity

The Super Smart Ball Bushing® Bearing provides twice the load capacity of the industry standard Thomson Super Ball Bushing Bearing and six times the load capacity of conventional linear bearings.


Advantage: Travel Life

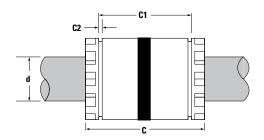
The Super Smart Ball Bushing Bearing provides eight times the travel life of the industry standard Thomson Super Ball Bushing bearing and 216 times the travel life of conventional linear bearings.

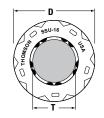


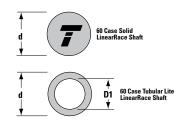
Part Number Description and Specification

Super Smart Ball Bushing Bearings (Closed Type) for End-Supported Applications

Super Smart Ball Bushing Pillow Blocks (Closed Type) for End-Supported Applications


Not all options are available in all sizes.


See catalog pages or contact Thomson Customer Support for combination availability. For additional information on bearing options, see page 263.



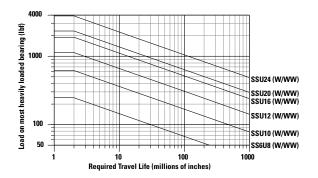
Super Smart Ball Bushing® Bearings (Closed Type) for End-Supported Applications

Super Smart Ball Bushing Bearings (Closed Type) and 60 Case® LinearRace® Shafting (Dimensions in inches)

	Part N	umber ⁽²⁾							Ball	60 Case	60 Case Solid	60 Case	60 Case
Without Integral Wipers	With one Integral Wiper	With two Integral Wipers	60 Case Linear Race	Nominal Diameter	Length C	C1	C2 min.	Number of Ball Circuits	Bushing bearing Mass Ib	LinearRace Minimum Depth of Hardness	LinearRace Mass Ib/in	Tubular Lite LinearRace Mass Ib/in	Tubular Lite LinearRace ID D1
SS6U8	SS6U8W	SS6U8WW	1/2 L	.500	1.250/1.230	1.032/1.012	.050	6	.07	.04	.06	-	-
SSU10	SSU10W	SSU10WW	5/8 L	.625	1.500/1.480	1.125/1.095	.055	10	.12	.04	.09	-	-
SSU12	SSU12W	SSU12WW	3/4 L	.750	1.625/1.605	1.285/1.255	.055	10	.16	.06	.13	.08	.46/.41
SSU16	SSU16W	SSU16WW	1 L	1.000	2.250/2.230	1.901/1.871	.068	10	.29	.08	.22	.16	.62/.56
SSU20	SSU20W	SSU20WW	1 1/4 L	1.250	2.625/2.600	2.031/1.991	.068	10	.52	.08	.35	-	-
SSU24	SSU24W	SSU24WW	1 1/2 L	1.500	3.000/2.970	2.442/2.402	.086	10	.99	.08	.50	.33	.93/.84

	Part Numbe	r ⁽²⁾	Working	Recommended	Housing Bore	60 Case	Ball Bushing beari	ng/60 Case LinearRace Fit Up‡	Dynamic (1) Load
Without Integral Wipers	With one Integral Wiper	With two Integral Wipers	Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Capacity Ib _t
SS6U8	SS6U8W	SS6U8WW	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	265
SSU10	SSU10W	SSU10WW	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	620
SSU12	SSU12W	SSU12WW	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	1130
SSU16	SSU16W	SSU16WW	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	1900
SSU20	SSU20W	SSU20WW	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.002C/.0001P	2350
SSU24	SSU24W	SSU24WW	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	3880

[‡] P = Preload, C = Clearance

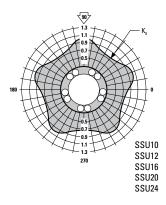

Note: For additional technical information, see the Engineering section beginning on page 252.

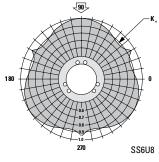
⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

(2) For part number description and specifications, see page 25. For specifications on seals and retaining rings, see the Accessories section.

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing Bearing)

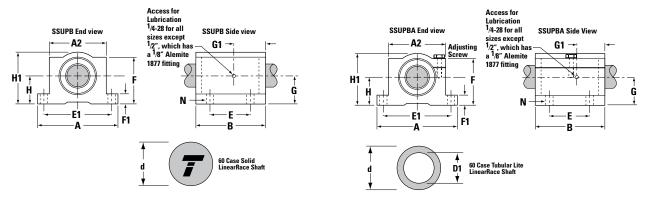

Determining Ball Bushing Bearing Size


To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_0 . Where K, can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_{n} is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

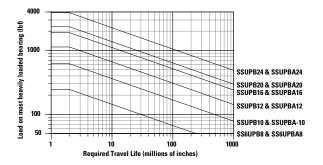


Super Smart Ball Bushing® Pillow Blocks (Closed and Adjustable Type) for End-Supported Applications

Super Smart Ball Bushing Pillow Blocks (Closed & Adjustable Types, seal at both ends) and LinearRace® (Dim. in inches)

•	· ·		•	•		-	•		•	•
Super Smart Ball B	Part Number (2) ushing Pillow Block	60 Case	Nominal Diameter	H ±.003	H1	60 Case LinearRace Diameter	60 Case LinearRace Minimum	60 Case Solid LinearRace Mass	60 Case Tubular Lite LinearRace	60 Case Tubular Lite LinearRace ID
Fixed	Adjustable	LinearRace				d	Depth of Hardness	lb/in	Mass lb/in	D1
SS6UPB8	SS6UPBA8	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	-	-
SSUPB10	SSUPBA10	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	-	-
SSUPB12	SSUPBA12	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
SSUPB16	SSUPBA16	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
SSUPB20	SSUPBA20	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	-	-
SSUPB24	SSUPBA24	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84

	umber ⁽²⁾ ushing Pillow Block	A	A2	В	E ±.010	E1 ±.010	F	F1	G	G 1	ľ	N.	Pillow Block Mass	Dynamic ⁽¹⁾ Load Capacity
Fixed	Adjustable				2.010	2.010					Hole	Bolt	lb	lb _f
SS6UPB8	SS6UPBA8	2.00	1.38	1.69	1.000	1.688	1.13	.25	.97	.44	.16	#6	.23	265
SSUPB10	SSUPBA10	2.50	1.75	1.94	1.125	2.125	1.44	.28	1.20	.69	.19	#8	.51	620
SSUPB12	SSUPBA12	2.75	1.88	2.06	1.250	2.375	1.56	.31	.94	.78	.19	#8	.62	1130
SSUPB16	SSUPBA16	3.25	2.38	2.81	1.750	2.875	1.94	.38	1.19	.91	.22	#10	1.24	1900
SSUPB20	SSUPBA20	4.00	3.00	3.63	2.000	3.500	2.50	.44	1.50	1.37	.22	#10	2.57	2350
SSUPB24	SSUPBA24	4.75	3.50	4.00	2.500	4.125	2.88	.50	1.75	1.13	.28	.25	3.94	3880

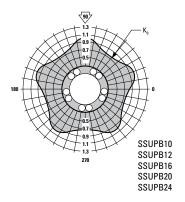

⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

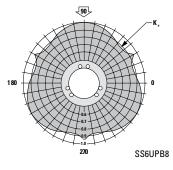
(2) For part number description and specifications, see page 25.

Note: For additional technical information, see the Engineering section beginning on page 252.

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing Bearing)

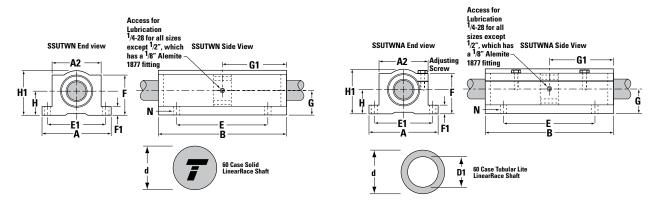

Determining Ball Bushing Bearing Size


To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_0 . Where K_n can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous.

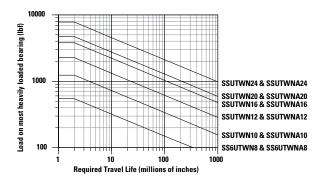


Super Smart Ball Bushing® Twin Pillow Blocks (Closed and Adjustable Type) for End-Supported Applications

Super Smart Ball Bushing Twin Pillow Blocks (Closed Type, seal at both ends) and 60 Case® LinearRace® Shaft (Dim. in in.)

•	•		-		-	-				
	Part Number (2) ushing Pillow Block	60 Case	Nominal Diameter	H ±.003	H1	60 Case LinearRace Diameter	60 Case LinearRace Minimum	60 Case Solid LinearRace Mass	LinearRace	60 Case Tubular Lite LinearRace
Fixed	Adjustable	LinearRace				d	Depth of Hardness	lb/in	Mass lb/in	ID D1
SS6UTWN8	SS6UTWNA8	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	-	-
SSUTWN10	SSUTWNA10	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	-	-
SSUTWN12	SSUTWNA12	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
SSUTWN16	SSUTWNA16	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
SSUTWN20	SSUTWNA20	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	-	-
SSUTWN24	SSUTWNA24	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84

	umber ⁽²⁾ ushing Pillow Block	A	A 2	В	E ±.010	E1 ±.010	F	F1	G	G1	r	N	Pillow Block Mass	Dynamic ⁽¹⁾ Load Capacity
Fixed	Adjustable				1.010	2.010					Hole	Bolt	lb	lb _f
SS6UTWN8	SS6UTWNA8	2.00	1.38	3.50	2.500	1.688	1.13	.25	.59	1.75	.16	#6	.46	530
SSUTWN10	SSUTWNA10	2.50	1.75	4.00	3.000	2.125	1.44	.28	.85	2.00	.19	#8	1.02	1240
SSUTWN12	SSUTWNA12	2.75	1.88	4.50	3.500	2.375	1.56	.31	.94	2.25	.19	#8	1.24	2260
SSUTWN16	SSUTWNA16	3.25	2.38	6.00	4.500	2.875	1.94	.38	1.19	3.00	.22	#10	2.48	3800
SSUTWN20	SSUTWNA20	4.00	3.00	7.50	5.500	3.500	2.50	.44	1.50	3.75	.22	#10	5.14	4700
SSUTWN24	SSUTWNA24	4.75	3.50	9.00	6.500	4.125	2.88	.50	1.75	4.50	.28	.25	8.08	7760

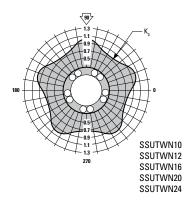

⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs. Dynamic load capacity is based on two bearings equally loaded.

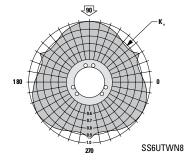
(2) For part number description and specifications, see page 25.

Note: For additional technical information, see the Engineering section beginning on page 252.

Load/Life Graph

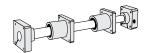
(Lines indicate limiting load for given Ball Bushing Bearing)

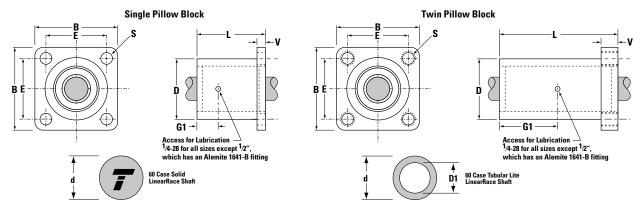

Determining Ball Bushing Bearing Size


To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_0 . Where K, can be determined from the Polar Graph to the right.

Polar Graphs


The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.



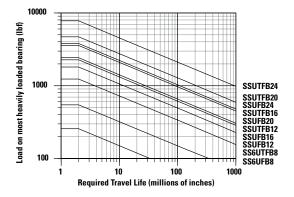
Super Smart Ball Bushing® Flanged Single and Twin Pillow Blocks for End-Supported Applications

Super Smart Ball Bushing Flanged Pillow Blocks and 60 Case® LinearRace® Shaft (Dimensions in inches)

	Part Numb	oer ⁽²⁾									60 Case	60 Case	60 Case	60 Case	60 Case	Pillow	Dyn. (1)
	Super Smart Ball Bushing Flanged Pillow Block		Nominal Diameter	В	E ±.010	L	D	V	G1	Hole Dia.	LinearRace Diameter d	LinearRace Minimum Depth of Hardness	Solid LinearRace Mass Ib/in	Tubular Lite LinearRace Mass Ib/in	Tubular Lite LinearRace ID D1	Block Mass Ib	Load Cap. Ib _f
ı	SS6UFB8	1/2 L	.500	1.63	1.250	1.69	1.25	.25	.72	.19	.4995/.4990	.04	.06	-	-	.23	265
	SSUFB12	3/4 L	.750	2.38	1.750	2.06	1.75	.38	.89	.22	.7495/.7490	.06	.13	.08	.460/.416	.52	1130
	SSUFB16	1 L	1.000	2.75	2.125	2.81	2.25	.50	1.27	.28	.9995/.9990	.08	.22	.16	.629/.569	1.04	1900
	SSUFB20	1 1/4 L	1.250	3.50	2.750	3.63	3.00	.63	1.67	.35	1.2495/1.2490	.08	.35	-	-	2.21	2350
	SSUFB24	1 1/2 L	1.500	4.00	3.125	4.00	3.62	.75	1.86	.41	1.4994/1.4989	.08	.50	.33	.93/.84	3.68	3880

Super Smart Ball Bushing Flanged Twin Pillow Blocks and 60 Case LinearRace Shaft (Dimensions in inches)

	Part Numb	oer ⁽²⁾									60 Case	60 Case	60 Case	60 Case	60 Case	Pillow	
Bus	per Smart Ball shing Flanged Twin Pillow Block	60 Case LinearRace	Nominal Diameter	В	E ±.010	L	D	V	G1	S Thread	LinearRace Diameter d	LinearRace Minimum Depth of Hardness	Solid LinearRace Mass Ib/in	Tubular Lite LinearRace Mass Ib/in	Tubular Lite LinearRace ID D1	Block Mass Ib	Dynamic ⁽¹⁾ Load Cap. Ib _f
	SS6UTFB8	1/2 L	.500	1.63	1.250	3.20	1.25	.90	1.48	1/4-20	.4995/.4990	.04	.06	-	-	.45	530
	SSUTFB12	3/4 L	.750	2.38	1.750	3.95	1.75	.90	1.98	1/4-20	.7495/.7490	.06	.13	.08	.460/.416	1.05	2260
	SSUTFB16	1 L	1.000	2.75	2.125	5.33	2.25	.90	2.67	5/16-18	.9995/.9990	.08	.22	.16	.629/.569	1.95	3800
	SSUTFB20	1 1/4 L	1.250	3.50	2.750	6.70	3.00	.90	3.35	5/16-18	1.2495/1.2490	.08	.35	-	-	4.06	4700
	SSUTFB24	1 1/2 L	1.500	4.00	3.125	7.50	3.62	1.00	3.75	3/8-16	1.4994/1.4989	.08	.50	.33	.93/.84	6.84	7760

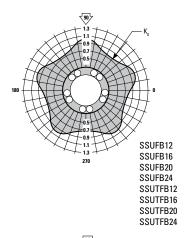

⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs. Dynamic load capacity for Twin configuration is based on two bearings equally loaded.

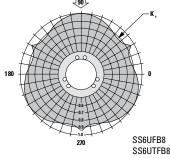
Note: For additional technical information, see the Engineering section beginning on page 252.

⁽²⁾ For part number description and specifications, see page 25.

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing Bearing)

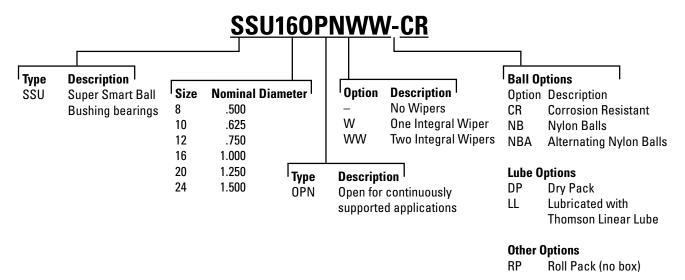

Determining Ball Bushing Bearing Size

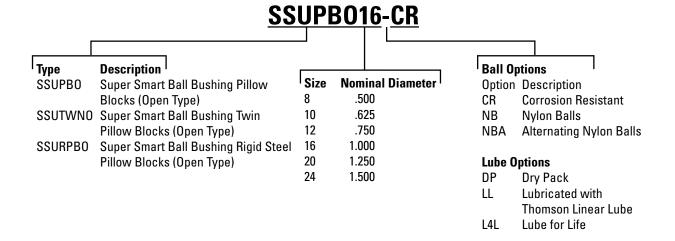

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball BushingBearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_0 . Where K_n can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

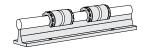


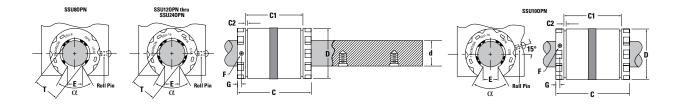


Part Number Description and Specification

Super Smart Ball Bushing $^{\circledR}$ Bearings (Open Type) for Continuously Supported Applications

Super Smart Ball Bushing Pillow Blocks (Open Type) for Continuously Supported Applications




Not all options are available in all sizes.

See catalog pages or contact Thomson Customer Support for combination availability. For additional information on bearing options, see page 264.

Super Smart Ball Bushing Bearings

(Open Type) for Continuously Supported Applications

Super Smart Ball Bushing Bearings (Open Type) and 60 Case® LinearRace® Shafting (Dimensions in inches)

	Part Nu	mber ⁽¹⁾						Min. Slot		ntion ole			Ball
Without Integral Wipers	With one Integral Wiper	With two Integral Wipers	60 Case Linear Race*	Nom. Dia.	Length C	C1	C2 min.	Width	Dia.	Loc. G	Angle deg α	Number of Ball Circuits	Bushing bearing Mass Ib
SSU80PN	SSU80PNW	SSU80PNWW	1/2 L PD	.500	1.250/1.230	1.032/1.012	.050	.31	.13	.62	90	6	.07
SSU100PN	SSU100PNW	SSU100PNWW	5/8 L PD	.625	1.500/1.480	1.125/1.095	.055	.34	.11	.13	60	8	.09
SSU120PN	SSU120PNW	SSU120PNWW	3/4 L PD	.750	1.625/1.605	1.285/1.255	.055	.41	.14	.13	60	8	.13
SSU160PN	SSU160PNW	SSU160PNWW	1 L PD	1.000	2.250/2.230	1.901/1.871	.068	.53	.14	.13	60	8	.24
SSU200PN	SSU200PNW	SSU200PNWW	1 1/4 L PD	1.250	2.625/2.600	2.031/1.991	.068	.62	.20	.19	50	8	.43
SSU240PN	SSU240PNW	SSU240PNWW	1 1/2 L PD	1.500	3.000/2.970	2.442/2.402	.086	.74	.20	.19	50	8	.80

^{* 60} Case begins on page 170.

	Part Number	(1)	Working	Recommende	d Housing Bore Dia.	60 Case	Ball Bushing beari	ng/LinearRace Fit Up ‡	Dynamic ⁽²⁾
Without Integral Wipers	With one Integral Wiper	With two Integral Wipers	Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SSU80PN	SSU80PNW	SSU80PNWW	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	360
SSU100PN	SSU100PNW	SSU100PNWW	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	620
SSU120PN	SSU120PNW	SSU120PNWW	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	1130
SSU160PN	SSU160PNW	SSU160PNWW	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	1900
SSU200PN	SSU200PNW	SSU200PNWW	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.002C/.0001P	2350
SSU240PN	SSU240PNW	SSU240PNWW	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	3880

[‡] P = Preload, C = Clearance

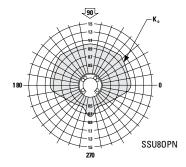
⁽¹⁾ For part number description and specifications, see page 34.
(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

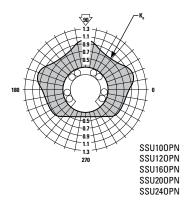
Load/Life Graph

(Lines indicate limiting load for given Ball Bushing® Bearing)

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

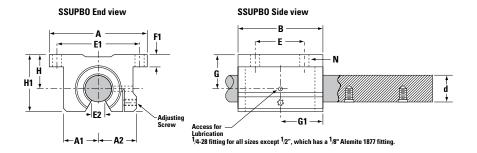

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_0 . Where K_n can be determined from the Polar Graph to the right.


When using LSRA smart rail assemblies, the dynamic load capacity for side-loaded or pull-off applications must be derated by 75% or .25 times the dynamic load capacity.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor $K_{\scriptscriptstyle n}$ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

Note: For Super Smart Ball Bushing® Bearings and other extremely high-load bearings, the bearing load capacity as indicated by the polar charts may be be practically limited by the degree of shaft flexure acceptable or the capacity of the shaft rail assembly fasteners. In such cases, the loads should be kept below these practical limits, however, the full corresponding life capacity benefits are still realized.



Super Smart Ball Bushing Pillow Blocks

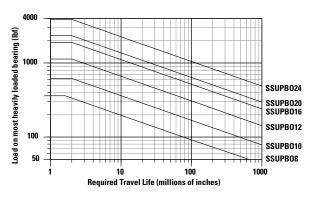
(Open Type) for Continuously Supported Applications

Super Smart Ball Bushing Pillow Blocks (Open Type) and 60 Case® LinearRace® (Dimensions in inches)

Part Numb	er ⁽¹⁾	Newinel			60 Case LinearRace
Super Smart Ball Bushing Pillow Block	60 Case LinearRace	Nominal Diameter	H ±.003	H1	Diameter d
SSUPB08	1/2 L PD	.500	.687	1.13	.4995/.4990
SSUPB010	5/8 L PD	.625	.875	1.44	.6245/.6240
SSUPB012	3/4 L PD	.750	.937	1.56	.7495/.7490
SSUPB016	1 L PD	1.000	1.187	2.00	.9995/.9990
SSUPB020	1 1/4 L PD	1.250	1.500	2.50	1.2495/1.2490
SSUPB024	1 1/2 L PD	1.500	1.750	2.94	1.4994/1.4989

^{* 60} Case begins on page 170.

Part Number (1)					-	F4	го				N	N1	D.II DI 115	Dynamic ⁽²⁾ Load
Super Smart Ball Bushing Pillow Block	Α	A1	A2	В	±.010	£1 ±.010	E2 min.	F1	G	G1	Hole	Bolt	Pillow Block Mass lb	Capacity lb _f
SSUPB08	2.00	.69	.75	1.50	1.000	1.688	.31	.25	.50	.89	.16	#6	.23	360
SSUPB010	2.50	.88	.94	1.75	1.125	2.125	.34	.28	.55	.95	.19	#8	.41	620
SSUPB012	2.75	.94	1.00	1.88	1.250	2.375	.41	.31	.67	1.08	.19	#8	.51	1130
SSUPB016	3.25	1.19	1.25	2.63	1.750	2.875	.53	.38	.87	1.45	.22	#10	1.03	1900
SSUPB020	4.00	1.50	1.63	3.38	2.000	3.500	.62	.44	1.15	1.83	.22	#10	2.15	2350
SSUPB024	4.75	1.75	1.88	3.75	2.500	4.125	.74	.50	1.28	2.02	.28	.25	3.29	3880

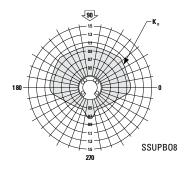

⁽¹⁾ For part number description and specifications, see page 34.

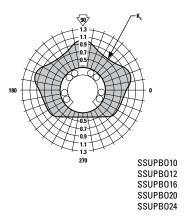
⁽²⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing® Bearing)

Determining Ball Bushing Bearing Size

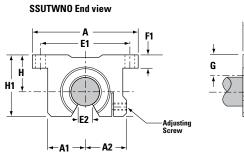

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

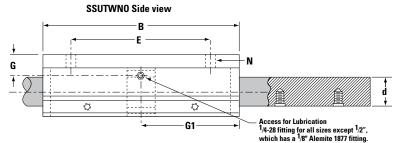

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_0 . Where K, can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

Note: For Super Smart Ball Bushing® Bearings and other extremely high load bearings, the bearing load capacity as indicated by the polar charts may be practically limited by the degree of shaft flexure acceptable, or the capacity of the shaft rail assembly fasteners. In such cases, the loads should be kept below these practical limits, however, the full corresponding life capacity benefits are still realized.




www.rodavigo.net +34 986 288118 Servicio de Att. al Cliente

Thomson RoundRail Linear Guides and Components

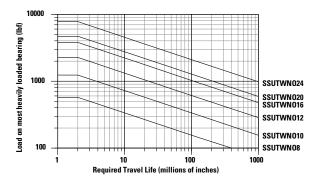
Super Smart Ball Bushing Twin Pillow Blocks (Open Type) for Continuously Supported Applications

Super Smart Ball Bushing Twin Pillow Blocks (Open Type, seal at both ends) and 60 Case® LinearRace® (Dimensions in inches)

<u>'</u>	` •	· · · · · · · · · · · · · · · · · · ·		
Part Numb	er ⁽¹⁾	Nominal	н	
Super Smart Ball Bushing Pillow Block	60 Case LinearRace*	Diameter	±.003	H1
SSUTWN08	1/2 L PD	.500	.687	1.13
SSUTWN010	5/8 L PD	.625	.875	1.44
SSUTWN012	3/4 L PD	.750	.937	1.56
SSUTWN016	1 L PD	1.000	1.187	2.00
SSUTWN020	1 1/4 L PD	1.250	1.500	2.50
SSUTWN024	1 1/2 L PD	1.500	1.750	2.94

^{* 60} Case begins on page 170.

Part Number (1)					-	F4	Fo				N	N1	Pillow Block Mass	Dynamic ⁽²⁾ Load Capacity Ib _t
Super Smart Ball Bushing Pillow Block	Α	A1	A2	В	±.010	E1 ±.010	E2 min.	F1	G	G1	Hole	Bolt	lb	
Dusining Pillow Diock											поте	DUIL		
SSUTWN08	2.00	.69	.75	3.50	2.500	1.688	.31	.25	.56	1.75	.16	#6	.46	720
SSUTWN010	2.50	.88	.94	4.00	3.000	2.125	.34	.28	.67	2.00	.19	#8	.82	1240
SSUTWN012	2.75	.94	1.00	4.50	3.500	2.375	.41	.31	.94	2.25	.19	#8	1.02	2260
SSUTWN016	3.25	1.19	1.25	6.00	4.500	2.875	.53	.38	1.20	3.00	.22	#10	2.06	3800
SSUTWN020	4.00	1.50	1.63	7.50	5.500	3.500	.62	.44	1.50	3.75	.22	#10	4.30	4700
SSUTWN024	4.75	1.75	1.88	9.00	6.500	4.125	.74	.50	1.75	4.50	.28	.25	6.88	7760

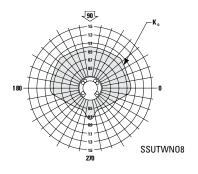

⁽¹⁾ For part number description and specifications, see page 34.

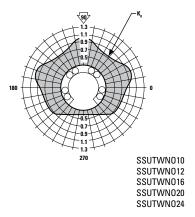
⁽²⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs. Dynamic load capacity is based on two bearings equally loaded.

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing® Bearing)

Determining Ball Bushing Bearing Size

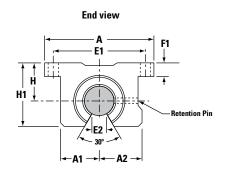

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

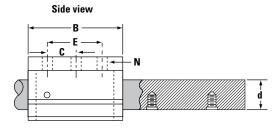

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_0 . Where K, can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_a is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

Note: For Super Smart Ball Bushing® Bearings and other extremely high load bearings, the bearing load capacity as indicated by the polar charts may be be practically limited by the degree of shaft flexure acceptable, or the capacity of the shaft rail assembly fasteners. In such cases, the loads should be kept below these practical limits, however, the full corresponding life capacity benefits are still realized.





Super Smart Ball Bushing Rigid Steel Pillow Blocks

(Open Type) for Continuously Supported Applications

Rigid steel housing and high performance Super **Smart Ball Bushing** Bearing combine to reduce deflection and cost up to 66%.

Super Smart Ball Bushing Bearing Rigid Steel Pillow Blocks (Open Type, seal at both ends) and LinearRace® (Dim. in in.)

Part Number (1)								
Super Smart Ball Bushing Rigid Steel Pillow Block	60 Case LinearRace* Shaft	Nominal Diameter	H ±.003	H1	A	A1	A2	В
SSURPB012	3/4 L PD	.750	.937	1.56	2.75	.94	1.00	1.88
SSURPB016	1 L PD	1.000	1.187	2.00	3.25	1.19	1.25	2.63
SSURPB024	1 1/2 L PD	1.500	1.750	2.94	4.75	1.75	1.88	3.75

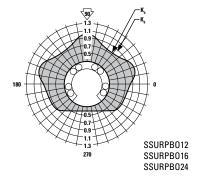
^{* 60} Case® begins on page 170.

Part Number (1) Super Smart Ball	60 Case LinearRace	E ±.010	C ±.010	E1 ±.010	E2 min.	F1	N		Pillow Block	Dynamic ⁽²⁾
Bushing Rigid Steel Pillow Block	Diameter						Hole	Bolt	Mass lb	Load Capacity Ib _f
SSURPB012	.7495/.7490	1.250	.625	2.375	.43	.31	.19	#8	1.10	1130
SSURPB016	.9995/.9990	1.750	.875	2.875	.56	.38	.22	#10	2.30	1900
SSURPB024	1.4994/1.4989	2.500	1.250	4.125	.81	.50	.28	.25	7.00	3880

⁽¹⁾ For part number description and specifications, see page 34.

Super Smart Ball Bushing Rigid Steel Pillow Blocks provide:

- Faster settling time...Greater Productivity
- Less deflection...Greater Accuracy
- **Highest Load Capacity...Smallest Envelope**
- Longest Bearing Life...Greater Reliability


⁽²⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing® Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor $K_{\scriptscriptstyle 0}$ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

Note: For Super Smart Ball Bushing Bearings and other extremely high load bearings, the bearing load capacity as indicated by the polar charts may be practically limited by the degree of shaft flexure acceptable, or the capacity of the shaft rail assembly fasteners. In such cases, the loads should be kept below these practical limits, however, the full corresponding life capacity benefits are still realized.

Pick and Place X-Y System

Objective

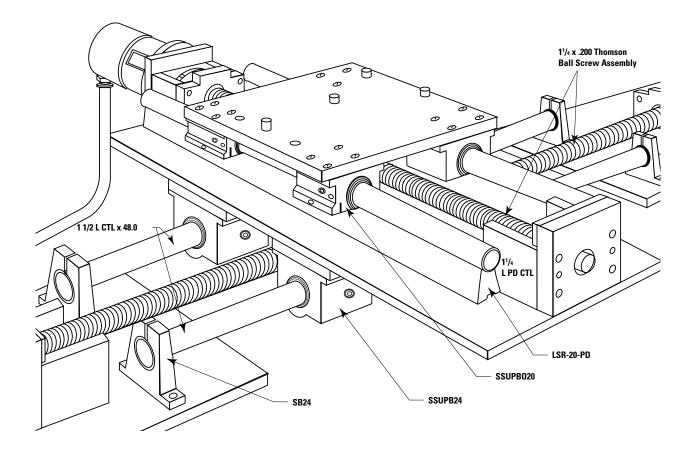
Build an X-Y System that transfers the work piece between two separate machining stations.

Solution

Assemble the X-Y System utilizing Super Smart pillow blocks on end-supported 60 Case® LinearRace® for the X-axis and continuously supported 60 Case LinearRace on the Y-axis. Utilize Thomson ball screw assemblies for high-speed positioning.

Products Specified

X-axis


- 2 1 1/2 L CTL x 48.00 in (60 Case LinearRace)
- 4 SB24 (60 Case LinearRace End Support Blocks)
- 4 SSUPB24 (Super Smart Ball Bushing Pillow Blocks)
- 1 1 1/4 x .200 (Thomson Ball Screw Assembly)

Benefits

The 60 Case LinearRace and 60 Case LinearRace end support blocks provide an important bridge between machining stations. The Super Smart Ball Bushing pillow blocks and Thomson ball screws provide uninterrupted high-speed movement of the work piece. Productivity increases by 200%.

Y-axis

- 2 LSR-20-PD x 48.00 in (Low-profile 60 Case LinearRace Support Rail)
- 4 SSUPB020 (Super Smart Ball Bushing Pillow Blocks)
- 1 1 1/4 x .200 (Thomson Ball Screw Assembly)
- 2 1 1/4 L PD CTL x 48.00 in (60 Case LinearRace)

